3.6.34 \(\int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\) [534]

3.6.34.1 Optimal result
3.6.34.2 Mathematica [A] (verified)
3.6.34.3 Rubi [A] (warning: unable to verify)
3.6.34.4 Maple [F(-1)]
3.6.34.5 Fricas [B] (verification not implemented)
3.6.34.6 Sympy [F]
3.6.34.7 Maxima [F]
3.6.34.8 Giac [F(-2)]
3.6.34.9 Mupad [B] (verification not implemented)

3.6.34.1 Optimal result

Integrand size = 21, antiderivative size = 116 \[ \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d} \]

output
-2*arctanh((a+b*tan(d*x+c))^(1/2)/a^(1/2))/d/a^(1/2)+arctanh((a+b*tan(d*x+ 
c))^(1/2)/(a-I*b)^(1/2))/d/(a-I*b)^(1/2)+arctanh((a+b*tan(d*x+c))^(1/2)/(a 
+I*b)^(1/2))/d/(a+I*b)^(1/2)
 
3.6.34.2 Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.96 \[ \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {-\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a}}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b}}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b}}}{d} \]

input
Integrate[Cot[c + d*x]/Sqrt[a + b*Tan[c + d*x]],x]
 
output
((-2*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/Sqrt[a] + ArcTanh[Sqrt[a + 
 b*Tan[c + d*x]]/Sqrt[a - I*b]]/Sqrt[a - I*b] + ArcTanh[Sqrt[a + b*Tan[c + 
 d*x]]/Sqrt[a + I*b]]/Sqrt[a + I*b])/d
 
3.6.34.3 Rubi [A] (warning: unable to verify)

Time = 0.89 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.91, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.619, Rules used = {3042, 4057, 25, 3042, 4022, 3042, 4020, 25, 73, 221, 4117, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4057

\(\displaystyle \int -\frac {\tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx-\int \frac {\tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\int \frac {\tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4022

\(\displaystyle \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} i \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} i \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {1}{2} i \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} i \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx+\int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4020

\(\displaystyle \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {\int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}-\frac {\int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+\frac {\int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}+\frac {\int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {i \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {i \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 221

\(\displaystyle \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+\frac {i \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {i \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {\int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{d}+\frac {i \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {i \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 \int \frac {1}{\frac {a+b \tan (c+d x)}{b}-\frac {a}{b}}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {i \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {i \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {i \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {i \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}\)

input
Int[Cot[c + d*x]/Sqrt[a + b*Tan[c + d*x]],x]
 
output
(I*ArcTan[Tan[c + d*x]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d) - (I*ArcTan[Tan[c 
 + d*x]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d) - (2*ArcTanh[Sqrt[a + b*Tan[c + 
d*x]]/Sqrt[a]])/(Sqrt[a]*d)
 

3.6.34.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4057
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[1/(c^2 + d^2)   Int[(a + b*Tan[e + f*x])^m 
*(c - d*Tan[e + f*x]), x], x] + Simp[d^2/(c^2 + d^2)   Int[(a + b*Tan[e + f 
*x])^m*((1 + Tan[e + f*x]^2)/(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, 
c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d 
^2, 0] &&  !IntegerQ[m]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 
3.6.34.4 Maple [F(-1)]

Timed out.

hanged

input
int(cot(d*x+c)/(a+b*tan(d*x+c))^(1/2),x)
 
output
int(cot(d*x+c)/(a+b*tan(d*x+c))^(1/2),x)
 
3.6.34.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 736 vs. \(2 (90) = 180\).

Time = 0.28 (sec) , antiderivative size = 1488, normalized size of antiderivative = 12.83 \[ \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")
 
output
[-1/2*(a*d*sqrt(((a^2 + b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) 
+ a)/((a^2 + b^2)*d^2))*log(((a^2 + b^2)*d^3*sqrt(-b^2/((a^4 + 2*a^2*b^2 + 
 b^4)*d^4)) - a*d)*sqrt(((a^2 + b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4 
)*d^4)) + a)/((a^2 + b^2)*d^2)) + sqrt(b*tan(d*x + c) + a)) - a*d*sqrt(((a 
^2 + b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a)/((a^2 + b^2)*d 
^2))*log(-((a^2 + b^2)*d^3*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a*d) 
*sqrt(((a^2 + b^2)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a)/((a^2 
 + b^2)*d^2)) + sqrt(b*tan(d*x + c) + a)) - a*d*sqrt(-((a^2 + b^2)*d^2*sqr 
t(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a)/((a^2 + b^2)*d^2))*log(((a^2 + 
b^2)*d^3*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a*d)*sqrt(-((a^2 + b^2 
)*d^2*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a)/((a^2 + b^2)*d^2)) + s 
qrt(b*tan(d*x + c) + a)) + a*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-b^2/((a^4 + 2* 
a^2*b^2 + b^4)*d^4)) - a)/((a^2 + b^2)*d^2))*log(-((a^2 + b^2)*d^3*sqrt(-b 
^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a*d)*sqrt(-((a^2 + b^2)*d^2*sqrt(-b^2/ 
((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a)/((a^2 + b^2)*d^2)) + sqrt(b*tan(d*x + 
c) + a)) - 2*sqrt(a)*log((b*tan(d*x + c) - 2*sqrt(b*tan(d*x + c) + a)*sqrt 
(a) + 2*a)/tan(d*x + c)))/(a*d), -1/2*(a*d*sqrt(((a^2 + b^2)*d^2*sqrt(-b^2 
/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a)/((a^2 + b^2)*d^2))*log(((a^2 + b^2)*d 
^3*sqrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - a*d)*sqrt(((a^2 + b^2)*d^2*s 
qrt(-b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + a)/((a^2 + b^2)*d^2)) + sqrt(...
 
3.6.34.6 Sympy [F]

\[ \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {\cot {\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx \]

input
integrate(cot(d*x+c)/(a+b*tan(d*x+c))**(1/2),x)
 
output
Integral(cot(c + d*x)/sqrt(a + b*tan(c + d*x)), x)
 
3.6.34.7 Maxima [F]

\[ \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\int { \frac {\cot \left (d x + c\right )}{\sqrt {b \tan \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cot(d*x+c)/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(cot(d*x + c)/sqrt(b*tan(d*x + c) + a), x)
 
3.6.34.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(cot(d*x+c)/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.6.34.9 Mupad [B] (verification not implemented)

Time = 5.21 (sec) , antiderivative size = 2028, normalized size of antiderivative = 17.48 \[ \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

input
int(cot(c + d*x)/(a + b*tan(c + d*x))^(1/2),x)
 
output
- atan((((((((((1/(a*d^2 - b*d^2*1i))^(1/2)*((32*(16*b^10*d^2 + 12*a^2*b^8 
*d^2))/d^3 - (16*(1/(a*d^2 - b*d^2*1i))^(1/2)*(16*b^10*d^4 + 24*a^2*b^8*d^ 
4)*(a + b*tan(c + d*x))^(1/2))/d^4))/2 + (576*a*b^8*(a + b*tan(c + d*x))^( 
1/2))/d^2)*(1/(a*d^2 - b*d^2*1i))^(1/2))/2 - (96*a*b^8)/d^3)*(1/(a*d^2 - b 
*d^2*1i))^(1/2))/2 - (96*b^8*(a + b*tan(c + d*x))^(1/2))/d^4)*(1/(a*d^2 - 
b*d^2*1i))^(1/2)*1i)/2 - ((((((((1/(a*d^2 - b*d^2*1i))^(1/2)*((32*(16*b^10 
*d^2 + 12*a^2*b^8*d^2))/d^3 + (16*(1/(a*d^2 - b*d^2*1i))^(1/2)*(16*b^10*d^ 
4 + 24*a^2*b^8*d^4)*(a + b*tan(c + d*x))^(1/2))/d^4))/2 - (576*a*b^8*(a + 
b*tan(c + d*x))^(1/2))/d^2)*(1/(a*d^2 - b*d^2*1i))^(1/2))/2 - (96*a*b^8)/d 
^3)*(1/(a*d^2 - b*d^2*1i))^(1/2))/2 + (96*b^8*(a + b*tan(c + d*x))^(1/2))/ 
d^4)*(1/(a*d^2 - b*d^2*1i))^(1/2)*1i)/2)/(((((((((1/(a*d^2 - b*d^2*1i))^(1 
/2)*((32*(16*b^10*d^2 + 12*a^2*b^8*d^2))/d^3 - (16*(1/(a*d^2 - b*d^2*1i))^ 
(1/2)*(16*b^10*d^4 + 24*a^2*b^8*d^4)*(a + b*tan(c + d*x))^(1/2))/d^4))/2 + 
 (576*a*b^8*(a + b*tan(c + d*x))^(1/2))/d^2)*(1/(a*d^2 - b*d^2*1i))^(1/2)) 
/2 - (96*a*b^8)/d^3)*(1/(a*d^2 - b*d^2*1i))^(1/2))/2 - (96*b^8*(a + b*tan( 
c + d*x))^(1/2))/d^4)*(1/(a*d^2 - b*d^2*1i))^(1/2))/2 + ((((((((1/(a*d^2 - 
 b*d^2*1i))^(1/2)*((32*(16*b^10*d^2 + 12*a^2*b^8*d^2))/d^3 + (16*(1/(a*d^2 
 - b*d^2*1i))^(1/2)*(16*b^10*d^4 + 24*a^2*b^8*d^4)*(a + b*tan(c + d*x))^(1 
/2))/d^4))/2 - (576*a*b^8*(a + b*tan(c + d*x))^(1/2))/d^2)*(1/(a*d^2 - b*d 
^2*1i))^(1/2))/2 - (96*a*b^8)/d^3)*(1/(a*d^2 - b*d^2*1i))^(1/2))/2 + (9...